
 agmr.hapres.com 

Adv Geriatr Med Res. 2021;3(2):e210010. https://doi.org/10.20900/agmr20210010 

Viewpoint 

Organelle-Specific Autophagy in Cellular Aging 
and Rejuvenation 
Tyler J. Butsch †, Bhaswati Ghosh †, K. Adam Bohnert * 

Department of Biological Sciences, Louisiana State University, 220 Life Sciences 

Building, Baton Rouge, LA 70803, USA  

† These authors contributed equally to this work. 

* Correspondence: K. Adam Bohnert, Email: bohnerta@lsu.edu;  

Tel.: +1-225-578-3204. 

ABSTRACT 

The health of a cell requires proper functioning, regulation, and quality 
control of its organelles, the membrane-enclosed compartments inside the 
cell that carry out its essential biochemical tasks. Aging commonly 
perturbs organelle homeostasis, causing problems to cellular health that 
can spur the initiation and progression of degenerative diseases and 
related pathologies. Here, we discuss emerging evidence indicating that 
age-related defects in organelle homeostasis stem in part from dysfunction 
of the autophagy-lysosome system, a pivotal player in cellular quality 
control and damage clearance. We also highlight natural examples from 
biology where enhanced activity of the autophagy-lysosome system might 
be harnessed to erase age-related organelle damage, raising potential 
implications for cellular rejuvenation. 
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In eukaryotic cells, molecular waste and damaged materials can be 
delivered to lysosomes for enzymatic degradation via autophagy [1]. 
During this process, autophagic vesicles, termed autophagosomes, form 
around select cargo, then subsequently fuse with the lysosome to allow for 
targeted degradation. Though autophagosomes were first observed by 
electron microscopy in the mid-1950s [2], it was not until nearly 40 years 
later that the first autophagy genes were identified in yeast [3–5]. Since 
then, breakthroughs in live-cell imaging have enabled sophisticated, real-
time imaging of the autophagic process in several eukaryotic species, 
including animals [6,7]. In addition, an expanding pharmacological toolkit 
of molecules that modify autophagic activity in vivo (Table 1) has 
facilitated manipulation of this system in live organisms and raised 
exciting therapeutic prospects. 

A defining feature of the autophagy-lysosome system is its unique ability 
to recalibrate cellular homeostasis in response to a cell’s needs. If a cell is 
under intrinsic or extrinsic stress, activation of autophagy can help to erase 
molecular damage and to recycle material needed to support basic biological 
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functions [1]. When these mechanisms fail, the stress can amplify, leading to 
an irreparable collapse in cellular homeostasis. Notably, aging is 
accompanied by several molecular signs of stress. As cells get older, genetic 
instability increases, proteins cluster into non-functional aggregates, and 
organelles, the cellular mini-factories that execute distinct signaling and 
metabolic functions, become damaged and inefficient [8]. Is this age-related 
collapse in cellular health and homeostasis linked to defects in autophagy?  

Remarkably, researchers have found that an early-age decrease in 
lysosome and autophagic activity may be an initiating “domino” in age-
related cellular deterioration [9,10]. Consistent with this model, modifying 
autophagic activity has profound effects on the aging process; experimental 
inhibition of lysosomal and/or autophagic factors accelerates aging in various 
organisms [11–14], whereas interventions that boost autophagic activity 
delay the appearance of cellular signs of aging and extend lifespan [15–17]. 
Even human centenarians [18], like long-lived mutant animals [19], have 
been reported to display exceptionally high levels of autophagic activity. 
These and other findings highlight the autophagy-lysosome system as an 
emerging nexus in the control of aging and longevity (Figure 1). Still, 
molecular details of this regulation remain obscure.  

 

Figure 1. Changes to autophagy of cellular organelles during the aging process. Lysosomes in young, 
healthy cells (on the left) are acidic and effectively degrade cellular waste, including organelles when 
necessary. This maintains robust homeostasis, which supports proper functioning not only of a cell but of a 
whole organism. However, in an old cell (on the right), lysosome dysfunction jeopardizes autophagic 
turnover, causing a build-up of damaged organelles along with protein aggregates; this leads to several age-
related disease pathologies and brings about changes to organismal physiology. Re-establishing the correct 
dynamics of organelle turnover at lysosomes in old cells might provide one entry point to trigger a 
rejuvenation of cellular health and homeostasis. AP, autophagosome. 
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For one, how is different autophagic cargo handled in aging cells, and 
do changes to cargo turnover directly contribute to the aging process? 
Many studies have investigated how defective autophagy impedes protein-
aggregate clearance in old cells [20]. This is an important line of research, 
given that impaired protein homeostasis (‘proteostasis’) is characteristic of 
many age-related diseases, including Alzheimer’s [21]. Yet, defective 
organelles are also common to age-related diseases [22–24], and their 
turnover is likewise sensitive to lysosome dysfunction [1,25]. To date, 
surprisingly little is known about the dynamics and control of organelle 
turnover in aging cells. Clarifying the regulation of organelle-specific 
autophagy during aging could provide novel clues on the biological basis 
of age-related disease, and might also hint at therapies for fighting the 
aging process. 

Perhaps the most information is currently known regarding the age-
related regulation of mitochondria, the energetic hubs of a cell. With age, 
mitochondrial function and homeostasis break down. Several proteins 
involved in oxidative phosphorylation and fatty-acid metabolism, two key 
cellular processes that occur at mitochondria, have been reported to 
decrease in abundance in old animals [26–28]. These molecular alterations, 
combined with other age-induced changes to mitochondrial protein levels 
and stoichiometry [29], are thought to impair mitochondrial activity and 
destabilize cellular bioenergetics and metabolism. As a consequence of 
this dysfunction, fragmented, oxidatively-damaged mitochondria are 
commonly seen in old cells of diverse eukaryotic species, ranging from 
yeasts to mammals [8,9,30–32]. Though healthy cells can effectively 
eliminate dysfunctional mitochondrial fragments by mitochondrial 
autophagy, or ‘mitophagy’ [33], mitochondrial-clearance mechanisms 
show signs of failure in old age [34,35]. This disrupts the balance between 
mitochondrial biogenesis and degradation, causing an age-dependent 
increase in damaged mitochondria that further exacerbates cell stress [34]. 
Mitophagy defects can predispose humans to degenerative disease; indeed, 
dysfunction of mitophagy factors, including Parkin and PINK1, is 
commonly seen in Parkinson’s disease patients [36,37]. Thus, impaired 
turnover of damaged organelles is at least partly to blame for some of the 
classic aging pathologies commonly seen in the clinic. 

Importantly, impaired turnover with age does not appear to be limited 
to mitochondria. In cells, lysosomes are responsible for degrading 
additional types of organelles, including portions of the endoplasmic 
reticulum (ER), peroxisomes, and even other lysosomes. Like 
mitochondrial damage, ER stress accumulates in old cells [38]. Strikingly, 
genetic inhibition of ER-phagy causes progeric phenotypes and shortened 
lifespan in mice [39], hinting that ER turnover might be required to slow 
the pace of aging. Additionally, peroxisomes and lysosomes have been 
reported to increase in abundance in late age in some species and cell 
types [40,41]. In fact, uncleared lysosomes generate a non-degradable, 
autofluorescent ‘age pigment’, which has been used as a visual readout for 
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biological age in multiple systems [42–44]. It will be important to clarify 
how directly these age-related changes in organelle number reflect 
impairment of the autophagy-lysosome system, and whether these 
changes bring about physiological effects on metabolic functioning in old 
animals. 

While the general trend is that organelle turnover appears to decline 
with advanced age due to autophagy-lysosome dysfunction (Figure 1), this 
may not be true of all organelles, or for all stages of the aging process. For 
example, pieces of the nucleus are degraded at lysosomes in aging worms, 
even in the healthiest of individuals [45]. How nuclear autophagy 
(‘nucleophagy’) regulates organismal physiology, particularly during 
aging, is unclear, but it may be protective, as suggested in mouse models 
of laminopathies [46]. It remains to be seen whether other organelles 
likewise undergo regulated, active turnover in aging animals. Some 
organelles may even be degraded in early aging but start to accumulate 
later once lysosomes become dysfunctional. Understanding the dynamics 
and timing of organelle turnover at different stages of aging could reveal 
complexities that affect aging rate and/or stochasticity among different 
individuals in a population.  

If organelle damage is generally characteristic of very old age, could 
harnessing organelle-specific autophagy help an old cell to regain its 
vitality and youthfulness? Germ (reproductive) cells provide a unique 
opportunity to study cellular rejuvenation, because age is naturally reset 
across generations. We and others have shown that cellular damage, 
including defective mitochondria, can be rapidly reversed as oocytes 
prepare for fertilization [47,48]. Removal of dysfunctional molecules and 
organelles is also seen during gametogenesis in single-celled yeast [49]. 
These findings imply that damage-clearance mechanisms may function 
centrally to the biological mechanisms of transgenerational rejuvenation. 
In support of this interpretation, lysosomes are activated in maturing 
oocytes prior to fertilization [47], and, once active, they could conceivably 
clear various forms of cellular damage, including dysfunctional organelles, 
to reset cellular health and homeostasis across generations. Though the 
specific cargo received by oocyte lysosomes awaits full description, 
identification of natural mechanisms that renew organelle health in the 
immortal germ-cell lineage could point the way to new strategies to 
counteract organelle damage in old somatic cells.  

Lysosome induction has been reported to also occur during stem-cell 
activation and differentiation [50–52]. In these contexts, as in oocyte 
maturation, lysosome activation is linked to a developmental rewiring of 
cellular metabolism. Though, again, much attention has been paid to the 
role of lysosome activity in stem-cell proteostasis, there is recent evidence 
that organelle-specific autophagy plays a fundamental role in stem-cell 
and regenerative biology [53–57]. For one, impaired mitophagy leads to 
muscle stem-cell quiescence in old mice, and re-establishing autophagic 
flux is sufficient for old muscle stem cells to exit quiescence and regain 
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stemness [58]. Importantly, defective mitophagy appears to cause 
oxidative stress and stem-cell depletion in other cell types as well [59,60]. 
These findings hint that mitochondrial turnover might be a pivotal 
determinant of regenerative capacity.   

Notably, mitophagy also appears important in the generation of 
induced pluripotent stem cells (iPSCs) [57,61]. A number of rejuvenating 
events, including telomere re-lengthening and organelle renewal, have 
been associated with iPSC generation from differentiated cells [62–64]. 
Inhibiting mitochondrial fission, one of the early steps in mitophagy 
induction [33,65], prevents the conversion of fibroblasts to iPSCs [61]. Thus, 
it is exciting to speculate that organelle-specific autophagy may be 
integrated with other rejuvenating events involved in iPSC 
reprogramming, and that enhancing these activities might provide an 
entry point to improve the efficiency of this process. 

Beyond mitophagy, other forms of organelle-specific autophagy are 
only beginning to be studied in the context of cellular regeneration and 
rejuvenation. Interestingly, elevated ER stress has been linked to iPSC 
death [66], and significant ER remodeling occurs as part of iPSC 
reprogramming [67]. In principle, ER quality control mechanisms, 
including ER-phagy, could aid regenerative capacity, particularly in old 
animals where persistent ER stress abounds [38]. As a compelling corollary, 
the ER has been shown to undergo dramatic rearrangements coincident 
with oocyte maturation and lysosome activation in the C. elegans germline 
[68]. How the ER and lysosomes are functionally and/or mechanically 
linked to support cellular rejuvenation is an important open question 
moving forward, as is the involvement of other organelle-turnover events 
in cellular-rejuvenation mechanisms. 

In summary, dynamic changes to the landscape of the cell occur during 
aging, and several of these age-related changes can be traced to alterations 
in organelle homeostasis and turnover (Figure 1). Harnessing the natural 
rejuvenating capacities of the autophagy-lysosome system provides one 
possible means to reverse age-related organelle damage and re-establish a 
more youthful cellular environment (Figure 1). In fact, pharmacological 
tools that boost lysosome function (Table 1) are currently being tested as 
potential anti-aging therapies in old animals and humans [69,70]. Looking 
forward, it seems likely that growing knowledge on the mechanistic 
principles that govern organelle turnover at lysosomes, and the specific 
parts of these systems that fail with old age, will open new doors for aging-
biology researchers in the quest to promote healthy aging, particularly at 
a cellular level. 
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Table 1. Example drugs that modulate autophagy in vivo. 

Drug Mode of action Reference 

Inducers 

Rapamycin Inhibits mTOR pathway [15,71–73] 

Torin1 Inhibits mTOR pathway [74,75] 

PP242 Inhibits mTOR pathway [76] 

Curcumin Activates Transcription factor EB; Inhibits mTOR pathway; Activates 

ERK1/2 pathway 

[77,78] 

Metformin Activates Sirtuin-1 [79] 

Resveratrol Activates Sirtuin-1 [80] 

Trehalose Inhibits SLC2a family of glucose transporters; Activates AMPK [81] 

Spermidine Regulates acetylation and deacetylation of cellular proteins [82,83] 

Lithium Reduces inositol triphosphate levels [84,85] 

Carbamazepine Reduces inositol triphosphate levels [86,87] 

Valproic acid Reduces inositol triphosphate levels [88] 

Inhibitors 

Chloroquine Impairs lysosomal acidification [10,73,89] 

Lys05 Impairs lysosomal acidification [90] 

Wortmannin Inhibits phosphatidylinositol 3-kinases [91] 

Bafilomycin A1 Inhibits V-ATPase; Inhibits autophagosome-lysosome fusion [19,92,93] 

Spautin-1 Inhibits USP10 and USP13, which regulate deubiquitination of Beclin-1 [94,95] 

DBeQ Inhibits p97/VCP [96] 
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